pacman::p_load(sf, tmap, tidyverse)In-Class Exercise 3
Import Packages
Load Data
NGA_wp = read_rds("data/rds/NGA_wp.rds")Plot Choropleth Maps
p1 <- tm_shape(NGA_wp) +
tm_fill("wp_functional",
n = 10,
style = "equal",
palette = "Blues") + #color scheme
tm_borders(lwd = 0.1, #line width
alpha = 1) + #opacity/transparency
tm_layout(main.title = "Distribution of functional water points",
legend.outside = FALSE)tmap_style("albatross")p1
p2 <- tm_shape(NGA_wp) +
tm_fill("total_wp",
n = 10,
style = "equal",
palette = "Blues") + #color scheme
tm_borders(lwd = 0.1, #line width
alpha = 1) + #opacity/transparency
tm_layout(main.title = "Distribution of functional water points",
legend.outside = FALSE)tmap_arrange(p2, p1, nrow=1)
# Add cols for percentile values for functional and nonfunctional WPs
NGA_wp <- NGA_wp %>%
mutate(pct_functional = wp_functional/total_wp) %>%
mutate(pct_nonfunctional = wp_nonfunctional/total_wp)tm_shape(NGA_wp) +
tm_fill("pct_functional",
n = 10,
style = "equal",
palette = "Blues",
legend.hist = TRUE) +
tm_borders(lwd = 0.1,
alpha = 1) +
tm_layout(main.title = "Rate map of functional water point by LGAs",
legend.outside = TRUE)
Extreme Value Maps
Percentile map: special type of quantile map
Create a classification scheme (including of beginning and end)
# Exclusde NA records
NGA_wp <- NGA_wp %>%
drop_na()# Create custom classification & extracting vals
percent <- c(0, .01, .1, .5, .9, .99, 1)
var <- NGA_wp["pct_functional"] %>%
st_set_geometry(NULL) #drop away all the geometric fields
quantile(var[,1], percent) 0% 1% 10% 50% 90% 99% 100%
0.0000000 0.0000000 0.2169811 0.4791667 0.8611111 1.0000000 1.0000000
Extract map plotting into a reusable function
# function: extract a variable (vname) as a vector
# out of a s.f. dataframe (df)
# returns vector of values (without a col name
get.var <- function(vname, df) {
v <- df[vname] %>%
st_set_geometry(NULL)
v <- unname(v[,1])
return(v)
}percentmap <- function(vnam, df, legtitle=NA, mtitle="Percentile Map") {
percent <- c(0, .01, .1, .5, .9, .99, 1)
var <- get.var(vnam, df)
bperc <- quantile(var, percent)
tm_shape(df) +
tm_polygons() +
tm_shape(df) +
tm_fill(vnam,
title=legtitle,
breaks=bperc,
palette="Blues",
labels=c("< 1%", "1% - 10%", "10% - 50%", "50% - 90%", "90% - 99%", ">99%")) +
tm_borders() +
tm_layout(main.title = mtitle,
title.position = c("right", "bottom"),
legend.outside = TRUE)
}percentmap ("pct_functional", NGA_wp)
BoxPlot
ggplot(data = NGA_wp, aes(x="", y=wp_nonfunctional)) +
geom_boxplot()
BoxMap
# Creates break points for box map
boxbreaks <- function(v,mult=1.5) {
qv <- unname(quantile(v))
iqr <- qv[4] - qv[2]
upfence <- qv[4] + mult * iqr
lofence <- qv[2] - mult * iqr
# initialize break points vector
bb <- vector(mode="numeric",length=7)
# logic for lower and upper fences
if (lofence < qv[1]) { # no lower outliers
bb[1] <- lofence
bb[2] <- floor(qv[1])
} else {
bb[2] <- lofence
bb[1] <- qv[1]
}
if (upfence > qv[5]) { # no upper outliers
bb[7] <- upfence
bb[6] <- ceiling(qv[5])
} else {
bb[6] <- upfence
bb[7] <- qv[5]
}
bb[3:5] <- qv[2:4]
return(bb)
}var <- get.var("wp_nonfunctional", NGA_wp)
boxbreaks(var)[1] -56.5 0.0 14.0 34.0 61.0 131.5 278.0
# Function to create Boxmap
boxmap <- function(vnam, df,
legtitle=NA,
mtitle="Box Map",
mult=1.5){
var <- get.var(vnam,df)
bb <- boxbreaks(var)
tm_shape(df) +
tm_polygons() +
tm_shape(df) +
tm_fill(vnam,title=legtitle,
breaks=bb,
palette="Blues",
labels = c("lower outlier",
"< 25%",
"25% - 50%",
"50% - 75%",
"> 75%",
"upper outlier")) +
tm_borders() +
tm_layout(main.title = mtitle,
title.position = c("left",
"top"))
}tmap_mode("plot")
boxmap("wp_nonfunctional", NGA_wp)
# Recode LGAs with 0 wp to NA
NGA_wp <- NGA_wp %>%
mutate(wp_functional = na_if(
total_wp, total_wp < 0))